
LLNL-PRES-813307
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Performance Analysis with Hatchet

Olga Pearce, Stephanie Brink,12 April 2021
Abhinav Bhatele (Univ of Maryland), Todd Gamblin

2
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

§ The SPOT container includes a sample Jupyter notebook, Hatchet v1.3.0 install, and
Lulesh datasets.
— Alternatively, the sample Jupyter notebook and the Lulesh datasets are available directly at

https://github.com/llnl/spotbe. This will require you to setup your own environment with a caliper
and hatchet install (and setup the paths accordingly in the notebook)!

§ Following this tutorial, you can substitute your own SPOT/Caliper data files into the
example notebook.

§ We’ll use this material in the hands-on portion of the tutorial.

Getting Hatchet Tutorial Materials

https://github.com/llnl/spotbe

3
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

Automated Application Performance Analysis:
Caliper à SPOT à Hatchet

SPOT and Hatchet

Caliper instrumentation
in the application

At runtime: Performance
and Metadata Collection Web-based Visualization and

Analysis Tools

#include <caliper/cali.h>

static inline
void LagrangeElements(Domain&
domain, Index_t numElem)
{

CALI_CXX_MARK_FUNCTION;
// ...

Analyze
caliper datasets

in Python

*Hatchet can analyze other datasets (HPCToolkit, gprof, TAU (WIP), Ascent (WIP))c/o D Boehme

4
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

SPOT Web Interface: Run Table and Jupyter Notebooks

Jupyter notebook contains
Hatchet functions

Buttons bring up Jupyter
notebook or specialized

analysis views

c/o D Boehme

5
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

§ Identify performance bottlenecks to enhance application development
— Profiling and tracing tools (e.g., Caliper, HPCToolkit, TAU, Score-P, Gprof, Callgrind) provide insights

into parts of the code that consume the most time

§ Hatchet is an open-source python-based tool for enabling programmatic analysis of
structured (or hierarchical) data

§ Hatchet can be used to sub-select and focus on a specific region of the data, compare
multiple execution profiles, and automate analysis in python scripts

Hatchet is a performance analysis tool for parallel profiles

https://github.com/hatchet/hatchet/

https://github.com/hatchet/hatchet/

6
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

What do profiling/tracing tools collect?

Each node may contain:

§ Contextual Info
— File
— Line number
— Function name
— Callpath
— Load module
— Rank ID
— Thread ID

§ Performance Metrics
— Time
— Flops
— Cache misses

foo

bar qux waldo

baz grault quux

corge

bar grault garply

baz grault

fred garply

plugh xyzzy

thud

baz garply

Calling Context Tree (CCT)

Hatchet can read
profiles from:
§ Caliper
§ HPCToolkit
§ Gprof
§ TAU (WIP)
§ Ascent (WIP)

7
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

Hatchet’s GraphFrame: a Graph and a Dataframe

main

physics solvers

mpi

psm2

hypre mpi

psm2

Graph: Stores relationships between
parents and children

Pandas Dataframe: 2D table storing
numerical data associated with each node
(may be unique per rank, per thread)

8
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

Visualizing Hatchet’s GraphFrame components

9
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

Compare GraphFrames using division
(or add, subtract, multiply)

/

∪

*First, unify two trees since
structure is different =

gf1 gf2gf3

=

10
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

Filter the GraphFrame by node metrics in the dataframe

Keep only those
nodes with a value
greater than 1

11
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

Filter the GraphFrame using Hatchet’s call path query language

§ Data reduction using call path pattern
matching

Matches a call path (1) rooted at a node with
name “solvers”, (2) followed by a node with a

time metric value less than 50, and (3) followed
by any number of children nodes.

Call Path Query

12
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

Filter the GraphFrame using Hatchet’s call path query language

§ Data reduction using call path pattern
matching

Matches a call path (1) rooted at a node with
name “solvers”, (2) followed by a node with a

time metric value less than 50, and (3) followed
by any number of children nodes.

Call Path Query

13
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

Filter the GraphFrame using Hatchet’s call path query language

§ Data reduction using call path pattern
matching

Matches a call path (1) rooted at a node with
name “solvers”, (2) followed by a node with a

time metric value less than 50, and (3) followed
by any number of children nodes.

Call Path Query

14
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

Filter the GraphFrame using Hatchet’s call path query language

§ Data reduction using call path pattern
matching

Matches a call path (1) rooted at a node with
name “solvers”, (2) followed by a node with a

time metric value less than 50, and (3) followed
by any number of children nodes.

Call Path Query

15
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

How do I load SPOT/Caliper data into Hatchet?

3. Caliper file(s) to explore
4. Setup cali-query to

extract performance data

2. Buttons bring up filled-in
Jupyter notebook loading 1
or many SPOT/Caliper files

5. Hatchet’s Caliper reader
loads into Hatchet’s
GraphFrame object

1. Directory of
SPOT/Caliper files

16
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

§ The SPOT container includes a sample Jupyter notebook, Hatchet v1.3.0 install, and
Lulesh datasets.
— Alternatively, the sample Jupyter notebook and the Lulesh datasets are available directly at

https://github.com/llnl/spotbe. This will require you to setup your own environment with a caliper
and hatchet install (and setup the paths accordingly in the notebook)!

§ Following this tutorial, you can substitute your own SPOT/Caliper data files into the
example notebook.

§ Hop over to Jupyter to run the notebook

§ We’ll be walking through hatchet_ecp2021_tutorial_demo.ipynb

Hands-On Time!

https://github.com/llnl/spotbe

17
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

Review: Topics covered in today’s tutorial

§ Single graph:
— Load SPOT/Caliper data file
— Visualize tree and

dataframe
— Filter and squash tree

§ Speedup of two trees:
— Load two SPOT/Caliper

data files
— Divide two graphs for

speedup comparison
— Visualize resulting tree
— Generate speedup plot for

interesting functions

§ Subtract two trees:
— Load two SPOT/Caliper

data files
— Compute percent change

of two nightly test runs
(two different times)

— Update existing column in
dataframe

— Added new column to
dataframe

— Visualize resulting tree

Read in a SPOT/Caliper file
gf = ht.GraphFrame.from_caliper(

“my-file.cali”,
query,

)

Print tree visualization
print(gf.tree(metric_column=“time (inc)”))

Diff two trees
gf3 = (gf2 – gf1) / gf1

Divide two trees
gf3 = gf2 / gf1

Print dataframe
print(gf.dataframe)

18
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

§ Add or multiply two graphframes

§ Insert new column to dataframe of metrics
— Scale and offset “time” column by some factor:

https://hatchet.readthedocs.io/en/latest/advanced_examples.html#applying-scalar-operations-to-
attributes

— Compute imbalance across MPI ranks within a single application execution:
https://hatchet.readthedocs.io/en/latest/advanced_examples.html#applying-scalar-operations-to-
attributes

§ Groupby-and-aggregate nodes by other columns (e.g., function name, file name)
— res = gf.groupby_aggregate([“file”], {“time”: np.sum})

§ For more details, please visit our User Guide:
https://hatchet.readthedocs.io/en/latest/user_guide.html

Readily available features not covered in today’s tutorial

https://hatchet.readthedocs.io/en/latest/advanced_examples.html
https://hatchet.readthedocs.io/en/latest/advanced_examples.html
https://hatchet.readthedocs.io/en/latest/user_guide.html

19
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

§ Hatchet is a performance analysis tool for parallel profiles

§ It enables programmatic analysis of hierarchical data from one or multiple execution
profiles

§ Future Work:
— Support other profile formats, add a format for outputting GraphFrames to disk
— Implement a higher-level API for automating performance analysis

§ Hatchet https://github.com/hatchet/hatchet/

§ Caliper https://github.com/LLNL/Caliper

§ SPOT https://github.com/LLNL/spot2_container

Summary

Please contact us at
hatchet-help@listserv.umd.edu

or submit GitHub issues for Hatchet
questions, issues, or feature requests!

https://github.com/hatchet/hatchet/
https://github.com/LLNL/Caliper
https://github.com/LLNL/spot2_container

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

21
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

Overview of Hatchet Tutorial Examples

Hatchet’s Caliper reader loads
into Hatchet’s data object

called a GraphFrame

Caliper file to explore

Setup cali-query to extract
performance data

22
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

Visualizing the call graph

§ Each node in the tree visualization
maps to a function call in the
application

§ Nodes that are red have high
execution time

§ Nodes highlighted in grey indicate
user functions (code from external
libraries are not highlighted)

23
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

Overview of single tree dataset (Lulesh Data)

24
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

Filtering a tree

Original Graph

Filtered Graph

Filter graph to keep nodes whose time is greater
than 60% of the max time, then rewire graph

25
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

Computing percent change between two trees

gf1 gf2 abs((gf2-gf1)/gf1)

26
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

Computing speedup of two trees

/ =

1 Rank 64 Ranks

27
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

Computing speedup of two trees (invert color scheme of result)

/ =

1 Rank 64 Ranks

28
LLNL-PRES-813307

Documentation: hatchet.readthedocs.io

Generate Lulesh weak scaling plot

”Calc*” functions with
an inclusive time > 15
sec

